首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   86篇
  国内免费   2篇
  2021年   19篇
  2019年   7篇
  2018年   13篇
  2017年   16篇
  2016年   22篇
  2015年   45篇
  2014年   46篇
  2013年   44篇
  2012年   45篇
  2011年   53篇
  2010年   33篇
  2009年   28篇
  2008年   56篇
  2007年   48篇
  2006年   39篇
  2005年   49篇
  2004年   35篇
  2003年   43篇
  2002年   31篇
  2001年   27篇
  2000年   36篇
  1999年   20篇
  1998年   12篇
  1997年   7篇
  1995年   5篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   15篇
  1988年   7篇
  1987年   10篇
  1986年   13篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1977年   4篇
  1974年   6篇
  1971年   4篇
  1960年   4篇
  1938年   4篇
  1936年   9篇
  1935年   5篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1929年   7篇
排序方式: 共有1026条查询结果,搜索用时 687 毫秒
31.

Background

Noise-induced hearing loss (NIHL) is a major concern in the non-manufacturing industries. This study aimed to investigate the occupational noise exposure and the NIHL among Chinese restaurant workers and entertainment employees working in the service industry in Hong Kong.

Methods

This cross-sectional survey involved a total of 1,670 participants. Among them, 937 were randomly selected from the workers of Chinese restaurants and 733 were selected from workers in three entertainment sectors: radio and television stations; cultural performance halls or auditoria of the Leisure and Cultural Services Department (LCSD); and karaoke bars. Noise exposure levels were measured in the sampled restaurants and entertainment sectors. Each participant received an audiometric screening test. Those who were found to have abnormalities were required to take another diagnostic test in the health center. The “Klockhoff digit” method was used to classify NIHL in the present study.

Results

The main source of noise inside restaurants was the stoves. The mean hearing thresholds showed a typical dip at 3 to 6 KHz and a substantial proportion (23.7%) of the workers fulfilled the criteria for presumptive NIHL. For entertainment sectors, employees in radio and television stations generally had higher exposure levels than those in the halls or auditoria of the LCSD and karaoke bars. The mean hearing thresholds showed a typical dip at 6 KHz and a substantial proportion of the employees fulfilled the criteria for presumptive NIHL (38.6%, 95%CI: 35.1–42.1%). Being male, older, and having longer service and daily alcohol consumption were associated with noise-induced hearing impairment both in restaurant workers and entertainment employees.

Conclusion

Excessive noise exposure is common in the Chinese restaurant and entertainment industries and a substantial proportion of restaurant workers and entertainment employees suffer from NIHL. Comprehensive hearing conservation programs should be introduced to the service industry in Hong Kong.  相似文献   
32.
Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186–200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.  相似文献   
33.
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.  相似文献   
34.
Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200‐MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press‐focused (PF) transducer and zinc oxide self‐focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 µm two‐dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. Biotechnol. Bioeng. 2013; 110: 881–886. © 2012 Wiley Periodicals, Inc.  相似文献   
35.
We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2?), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2?, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2? and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2? dependent, and 3) protection by DCEB is evident beginning during ischemia.  相似文献   
36.
We explore the possible cellular cytotoxic activity of an amphiphilic silicon(IV) phthalocyanine with axially ligated rhodamine B under ambient light experimental environment as well as its in vivo antitumour potential using Hep3B hepatoma cell model. After loading into the Hep3B hepatoma cells, induction of cellular cytotoxicity and cell cycle arrest were detected. Strong growth inhibition of tumour xenograft together with significant tumour necrosis and limited toxicological effects exerted on the nude mice could be identified.  相似文献   
37.
Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs). The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann) were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH) was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ∼630 nm (λexcitation = 375 nm). The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ∼2×106 cells/mL.  相似文献   
38.
Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings.  相似文献   
39.
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.  相似文献   
40.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号